Theoretical, Practical, and Zeroemission Exergy Recovery in Energy Conversion Processes

Part I: Definition and importance of the exergy concept

Outline

- Energy versus exergy: Carnot engine
- Exergy definition
- Physical and chemical source of exergy: driving force
- EROI
- A simple example
- Parts of My research
 - Case study 1: Natural gas treatment and transport
 - Case study 2: UCG process with spontaneous CO₂ capture and sequestration
 - Case study 3: Geothermal energy

Energy and its quality

Nicolas Leonard Sadi Carnot (1796-1832)

Cycle and reversibility

their theory is very little understood, and the attempts to improve them are still directed almost by chance.

The question has often been raised whether the motive power of heat* is unbounded, whether the possible improvements in steam-engines have an assignable limit,—a limit which the nature of things will not allow to be passed by any means whatever; or whether, on the contrary, these improvements may be carried on indefinitely. We

*We use here the expression motive power to express the useful effect that a motor is capable of producing

REFLECTIONS

MOTIVE POWER OF HEAT:

FROM THE ORIGINAL FRENCH OF N.-L.-S. CARNOT,

Graduate of the Polytechnic School.

ACCOMPANIED BY AN ACCOUNT OF CARNOT'S THEORY. By Sir William Thomson (Lord Kelvin).

EDITED BY

R. H. THURSTON, M.A., LL.D., DR.ENG'G; Director of Sibley College, Cornell University; "Officier de l'Instruction Publique de France," etc., etc., etc.

SECOND, REVISED, EDITION FIRST THOUSAND.

NEW YORK: JOHN WILEY & SONS. London: CHAPMAN & HALL, Limited. 1897.

James Joule (1818-1889)

Sadi Carnot (1796-1832)

James Watt (1736-1819)

An introduction to the exergy concept

Carnot Cycle

The Carnot engine cycle Ref: Van Ness, H. C., Understanding Thermodynamics

T-S Diagram of Carnot Cycle

Cendel Y. A., Boles M. A., "Thern Aody transitions icanten by approach", 5th edition concept

Quantitative Definition

Quantitative Definition

$$\begin{split} W = \Delta H - T_{_0} \Delta S + T_{_0} S_{_{gen}} & \text{and} & \Delta H = H - H_{_0} \\ \Delta S = S - S_{_0} \end{split}$$

Gives:

 $W^{min} = H - H_0 - T_0 (S - S_0) + T_0 S_{gen}$ and Isentropic path (S_{gen} = 0)

Gives:

$$W^{min} = (H - T_0 S) - (H_0 - T_0 S_0)$$

Definitions:
Availability:

$$B_{T, P} = H_{T, P} - T_0 S_{T, P}$$

Exergy:
 $Ex_{T, P} = B_{T, P} - B_{T0, P0}$

Driving Force (Δ)

- Potential energy (ΔZ)
- Kinetic energy (ΔV)
- Chemical energy (Δx)
- Heat (ΔT)
- Mechanical energy (ΔP)

Chemical Exergy

Reference State Mixture of C_j components Equilibrium condition at T_0 , P_0 , composition Z_j

Step 4:

New components formed from elements of step 3 at T_0 , P_0

Step 2:

Individual components C_{j} T_0, P_0

Step 5:

<i>x</i> ₁	M_1	
<i>x</i> ₂	M_2	
:	:	
$ x_i $	M_i	

Individual components in equilibrium condition at T, P

Step 3:

$\boldsymbol{v}_{C_1}^1 \boldsymbol{e}_1$	$\boldsymbol{v}_{C_1}^2 \boldsymbol{e}_2$	 $\boldsymbol{v}_{C_1}^k \mathbf{e}_k$
$\boldsymbol{v}_{C_2}^1 \boldsymbol{e}_1$	$\boldsymbol{v}_{C_2}^2 \boldsymbol{e}_2$	 $\boldsymbol{v}_{C_2}^k \mathbf{e}_k$
:		
$\boldsymbol{v}_{C_j}^1 \boldsymbol{e}_1$	$\boldsymbol{v}_{C_j}^2 \boldsymbol{e}_2$	 $\boldsymbol{v}_{C_j}^k \boldsymbol{e}_k$

Individual elements of each component C_{i} at T_{0} , P_{0}

Step 6:

Xi M_1 M_2 M_3 \ldots M_i Final mixture of M_i components Equilibrium condition at T, P, composition x;

Chemical Exergy

Standard chemical exergy of elements has been reported in the literature based on the average composition of earth's crust, oceans, and the atmosphere

•
$$Ex_{ch,j}^{0} = \Delta_{f}G_{j,T0}^{0} + \sum v_{i} Ex_{ch,i}^{0}$$

- $\sum v_i e_i \rightarrow C_j$
- Ex⁰_{ch,i} is the standard chemical exergy of element i
- Δ_fG⁰_{j,T0} is the standard Gibbs free energy of formation of component j

Theoretical, Practical, and Zeroemission Exergy Recovery in Energy Conversion Processes

Part II: Formulation and Case studies

EROEI

- Energy Return On Energy Investment
- Definition:
 - How much of the energy available in a "natural resource" can be extracted per unit energy consumed in the recovery process, e.g., upstream operation, transportation, etc.
- Shortcomings:
 - Does not consider the energy quality, i.e. exergy
 - Highly depends on the current state of technology and its development

EROEI

How much of the energy available in a natural resource can be extracted per unit energy consumed in the recovery process, e.g., upstream operation, transportation, etc.

Data?

Translate the recorded economical data to energy data using commercial databases

What happens?

Table 9-3. Estimated Energy Requirements for Benefication of Limestone					
			Energy	Consumption	
Equipment (number of Units)	Daily hours/ unit	Single Unit (Btu/ton)	All Units (Btu/hour)	All Units (Btu/day)	All Units (Btu/ton)
Tertiary					
Crushing - (1)	18.00	1,660	552,000	9,940,000	1,660
Secondary					
(1)	18.00	995	332,000	5,970,000	985
Screens ^a					W-
(1)	18.00	332	111,000	1,990,000	332
Conveyor ^a	10.00	105	55.000	000 000	165
	18.00	100	55,000	990,000	100
(1)	18.00	6,120	2,040,000	36,720,000	6,120
Total			3,090,000	55,600,000	9,270

 $CaCO3 + Q \leftrightarrow CaO + CO2$ Q(calculated) = 3074 kJ/kg CaO

<u>?!!</u>

Process Flow Diagram

Theoretical, Practical, and zeroemission exergy recovery

- Theoretical exergy recovery
 - Based on the reversible processes shows the maximum possible exergy recovery with the following assumptions:
 - No mechanical exergy loss in the process equipments
 - No cumulative exergy consumptions (CExC) in the material and energy streams
- Practical exergy recovery
 - Based on the irreversible processes and considering the current technology, uses the following assumptions:
 - Mechanical efficiency of process equipments
 - Cumulative exergy consumption (CExC) in the material and energy streams
- Zero-emission exergy recovery
 - Considering the exergy consumption in cleaning the environmental footprints of fossil fuel life cycle in addition to the practical recovery

Calculation of theoretical, practical and sustainable exergy consumption

Method	η_i	$\begin{array}{c} Ex_1\\ (\text{preparation}) \end{array}$	Ex_2 (abatement)	ψ
Theoretical	1	$\begin{array}{c} Ex_1^t\\ (\text{Minimum}) \end{array}$	0	$\frac{Ex_{res} - Ex_1^t}{Ex_{res}}$
Practical	practical values	$Ex_1^p = \frac{Ex_1^t}{\eta_1}$	0	$\frac{Ex_{res} - Ex_1^p}{Ex_{res}}$
Sustainable	practical values	$Ex_1^s = \frac{Ex_1^t}{\eta_1}$	$Ex_2^s = \frac{Ex_2^t}{\eta_2}$	$\frac{Ex_{res} - Ex_1^s - Ex_2^s}{Ex_{res}}$

A simple example

Natural Gas

Results for Natural Gas

Exergy Consumption (% of total 20 years of Natural Gas produced)				
		Theoretical	Practical	Sustainable
	drilling	4.10E-04	8.20E-04	1.04E-03
Well	Steel	1.39E-03	1.00E-02	1.27E-02
	Cement	1.10E-04	2.89E-04	3.65E-04
Transport	Compressor	0.90	2.26	2.85
Transport	Steel	9.19E-02	0.66	0.84
Pofinory	Compression	3.04E-02	0.08	0.10
Refinely	Heating	0.38	1.50	1.90
Total (exclude CCS)		1.40	4.51	5.70
CCS	Total	-	26.44	33.43
Total (include CCS)		<u>1.40</u>	<u>30.95</u>	<u>39.13</u>

Underground Coal Gasification (UCG) - Un-minable coal resources: less than 15% of the known coal resources can

be extracted using conventional mining methods

- -Environmental issues of mining
- -Low quality coal seams

UCG with mineral injection

Gasification products

An introduction to the exergy concept

Chemical reactions

Combustion

□ $C + O_2 \rightarrow CO_2 + 393.77 \text{ kJ/mol}$

Gasification

- Global reaction
 - $C + 2 H_2O + CaO \leftrightarrow CaCO_3 + 2 H_2 + 87.9 kJ/mol$
- Boudouard reaction
 - $C + CO_2 \leftrightarrow 2 CO 172.58 \text{ kJ/mol}$
- Shift reaction
 - CO + H_2O ← → CO_2 + H_2 41.98 kJ/mol
- Methanation
 - C + 2 H₂ $\leftarrow \rightarrow$ CH₄ + 74.90 kJ/mol

Equilibrium relations

$$\prod_{i} \left(y_{i} \hat{\varphi}_{i} \right)^{v_{i,j}} = \left(\frac{P}{P^{o}} \right)^{-v_{j}} K_{j}$$

y_i: gas phase mole fraction

P⁰: standard pressure (1 bar)

P: system pressure

K_i: equilibrium constant of reaction j

 $v_{i,j}$: stoichiometric coefficient of component i in reaction j

$$\Phi_{i}: \text{ fugacity coefficient of component i in a gas mixture} -\sum_{v_{i,j}} V_{i,j} G_{i}^{\circ} exp $\frac{-i}{RT} \equiv K_{j}$
$$\frac{\Delta G^{\circ}}{RT} = \frac{\Delta G_{0}^{\circ} - \Delta H_{0}^{\circ}}{RT_{0}} + \frac{\Delta H_{0}^{\circ}}{RT} + \frac{1}{T} \int_{T_{0}}^{T} \frac{\Delta C_{P}^{\circ}}{R} dT - \int_{T_{0}}^{T} \frac{\Delta C_{P}^{\circ}}{RT} dT$$$$

$$\sum_{i}^{i} v_{i,j} H_{0i}^{o} \equiv \Delta H_{0}^{o}$$
$$\sum_{i}^{i} v_{i,j} C_{P_{i}}^{o} \dot{c} \Delta C_{P^{o}}$$

UCG process flow diagram (1)

An introduction to the exergy concept

UCG process flow diagram (2)

Application in UCG process

$$R_{coal}^{UCG} = \frac{Ex_{prod} - Ex_{coal}}{Ex_{coal}^{Ch}}$$

$$Ex_{con}^{th} = W_{pump} + W_{comp} + Ex_{CaO}^{Ch} + Ex_{water}^{Ch}$$

$$Ex_{con}^{pr} = \frac{W_{pump}}{\eta_{pump}\eta_{elec}} + \frac{W_{comp}}{\eta_{comp}\eta_{elec}} + \frac{Ex_{CaO}^{Ch}}{\eta_{CaO}^{prod}} + \frac{Ex_{water}^{Ch}}{\eta_{water}^{prod}}$$

$$Ex_{con} = \frac{W_{pump}}{\eta_{pump}\eta_{elec}} + \frac{W_{comp}}{\eta_{comp}\eta_{elec}} + \frac{Ex_{CaO}^{Ch}}{\eta_{CaO}^{prod}} + \frac{Ex_{water}^{Ch}}{\eta_{water}^{prod}}$$

$$+ Ex_{ccs}^{in} + Ex_{ccs}^{out} + Ex_{ccs}^{comb}$$

Exergetic recovery of UCG (1)

Pressure drop in the pipes

Pressure drop in porous media

- $\Delta P = \text{Pressure drop [Pa]} \qquad \Delta P = \frac{\mu}{k} uL$ $\mu = \text{Fluid viscosity [Pa.s]} \qquad \Delta P = \frac{\mu}{k} uL$ $k = \text{Permeability [m^2]}$ u = Darcy velocity [m/s]
- L = Length of porous media [m]

 $Ex_{p} = \frac{Q\left(\Delta P_{pipe} + \Delta P_{PM}\right)}{Ex_{p}}$ $\eta_p \eta_{pp} \eta_d$

 Ex_p = Pump exergy consumption [J/s] Q = Volumetric flow of water [m³/s] ΔP_{pipe} = pressure drop in pipes [Pa] ΔP_{PM} = pressure drop in porous media [Pa]

Steel and Cement embodied exergy

Steel	58094.71	kJ/kg
Cement	2323.79	kJ/kg
Steel density	7850	kg/m³
Cement density	2000	kg/m³

Exergy Consumption & Production

	kJ/s	%	$\mathbf{F}_{\mathbf{Y}}$ $\mathbf{F}_{\mathbf{Y}}$
Pump	8.29	21.91	$\eta_{Fx} = \frac{Ex_p - Ex_c}{-} \times 100$
Drilling	0.44	1.15	$Ex Ex_p$
Piping	28.15	74.44	623.38 - 37.82
Cement	0.94	2.50	= $$
Sum	37.82	100.00	=93.9%

Exergy Production = 623.38 kJ/s

Sustainable exergetic recovery of foscil fuels

