Cyclic Production of Carbon Dioxide-Rich and Hydrogen-Rich Gas in Underground Coal Gasification

A. A. Eftekhari¹, J. Bruining², J. Rogut³, D. W. van Batenburg⁴

¹ TU Delft, Department of Civil Engineering and Geosciences, Geo-engineering section, a.a.eftekhari@tudelft.nl ² TU Delft, Department of Civil Engineering and Geosciences, Geo-engineering section, j.bruining@tudelft.nl ³ GIG – Glowny Instytut Gornictwa, Katowice, Poland jrogut@gig.eu ⁴ TU Delft, Dietz Laboratory, Now at "Shell International Exploration & Production BV", d.vanbatenburg@shell.com

UCG in thin coal seams: a) No roof collapse; b) Complete roof collapse;

A simplified model of partial roof collapse scenario in UCG process;

Model Assumptions and Results

- \succ The process is semi-steady sate.
- \blacktriangleright Mass transfer from the bulk gas to the coal surface is the rate-controlling step.
- \succ At the coal surface, the gas composition is calculated by the chemical equilibrium equations.
- \succ Injected O₂ immediately reacts with combustible gases.

Feed Injection Scenario

 $\geq 0 < \text{time} < 10 \text{ days:}$

 O_2 injection rate: 0.15 mol/(m.s)

- Water injection rate: 0.02 mol/(m.s)
- \geq 10 days < time < 20 days O2 injection rate: 0.15 mol/(m.s)Water injection rate: 0.02 mol/(m.s)
- ➢ Pressure: 60 bar

Temperature Profile

Composition Profile

Conclusion

- Roof collapse is not detrimental to UCG process but leads to efficient processes
- > Due to the low temperature in the water-injection

Acknowledgement

The authors gratefully acknowledge the European commission, for the financial support of project HUGE (Hydrogen-oriented Underground coal Gasification for Europe).

cycle, the mass transfer is not the controlling step anymore; the reaction rate must be considered \triangleright Reaction rates must be considered in the model

> Optimal injection rates, water/oxygen injection ratio, and switching time can further improve the product composition

Reference

(1) van Batenburg, D. W., Biezen, E. N. J., Bruining, J., (1994): A new channel model for underground gasification of thin, deep coal seams, In Situ, 18:419.

Challenge the future